
1

Architecture and Design of Adaptive Object-Models
Joseph W. Yoder

Software Architecture Group –
Department of Computer Science

Univ. Of Illinois at Urbana-Champaign
Urbana, IL 61801

yoder@refactory.com

Federico Balaguer
Software Architecture Group –

Department of Computer Science
Univ. Of Illinois at Urbana-Champaign

Urbana, IL 61801
balaguer@cs.uiuc.edu

Ralph Johnson
Software Architecture Group –

Department of Computer Science
Univ. Of Illinois at Urbana-Champaign

Urbana, IL 61801
johnson@cs.uiuc.edu

ABSTRACT
Many object-oriented information systems share an

architectural style that emphasizes flexibility and run-time
adaptability. Business rules are stored externally to the program
such as in a database or XML files instead of in code. The object
model that the user cares about is part of the database, and the
object model of the code is just an interpreter of the users’ object
model. We call these systems “Adaptive Object-Models”,
because the users’ object model is interpreted at runtime and can
be changed with immediate (but controlled) effects on the system
interpreting it. The real power in Adaptive Object-Models is that
they have a definition of a domain model and rules for its integrity
and can be configured by domain experts external to the execution
of the program. This paper describes the Adaptive Object-Model
architecture along with its strengths and weaknesses. It illustrates
the Adaptive Object-Model architectural style by describing a
framework for Medical Observations (following Fowler’s
Analysis Patterns) that we built.

Keywords
Adaptive Object-Model, Adaptive Systems, Dynamic Object-

Model, Reflection, Reflective Systems Meta-Modeling, Meta-
Architectures, Metadata, Patterns.

1. INTRODUCTION
The era where business rules are buried in code is coming to

an end. Users often want to change their business rules without
writing new code. Customers require systems to adapt more
easily to changing business needs, that they meet their unique
requirements, and to scale to large and small installations [20].

Many information systems today need to be dynamic and
configurable so that they can quickly change to adapt to new
business needs. This is usually done by moving certain aspects of
the system, such as business rules, into a database so they can be
easily changed. The resulting model allows for a system to
quickly adapt to changing business needs by simply changing
values in the database rather than code. It also encourages the
development of tools that allow decision-makers and
administrators to introduce new products without programming
and to make changes to their business models at runtime. This

can reduce time-to-market of new ideas from months, to weeks
and days. Therefore, the power to customize the system is placed
in the hands of those who have the business knowledge to do it
effectively.

Architectures that can dynamically adapt at runtime to new
user requirement are sometimes called a "reflective architecture"
or a "meta-architecture". This paper focuses on a particular kind
of reflective architecture that has been given many names. It was
called the "Type Instance pattern" in a tutorial at OOPSLA’95 [8].
This paper calls it the "Adaptive Object-Model (AOM)
architecture". Most of the systems we have seen with an Adaptive
Object-Model are business systems that manage products of some
sort and are extended to add new products, and we have called it
"User Defined Product architecture" in the past [12]. These
systems have also been called “Active Object-Models” [5] and
“Dynamic Object Models” [17]. Martin Fowler’s “knowledge-
level” is usually just another name for an Adaptive Object-Model.

An Adaptive Object-Model is a system that represents
classes, attributes, and relationships as metadata. The system is a
model based on instances rather than classes. Users change the
metadata (object model) to reflect changes in the domain. These
changes modify the system’s behavior. In other word, it stores its
Object-Model in a database and interprets it. Consequently, the
object model is active, when you change it, the system changes
immediately.

This kind of architecture has been used to represent
insurance policies [12], to bill for telephone calls, and to check
whether an equipment configuration is likely to work. It has been
used to model workflow [13, 23], to model documents, and to
model databases. It has probably been used for a lot more things;
these are just the ones we have seen and are allowed to talk about.

We have noticed that projects applying Adaptive Object-
Models sometimes present a serious gap between architects and
developers. This gap includes not only different point of views
(design vs. implementation) but also a more fundamental one such
as abstractions and elements of the problem. This is due partly
because an Adaptive Object-Model has several levels of
abstraction, so there are several places that could be changed. An
Adaptive Object-Model has extra machinery to interpret and
execute rules, and to define relationships and attributes of entities.
These definitions are external to the running program. So there is
a disconnection between the model and its behavior (it is
indirect). The programmer is building a machine to execute a
model, not building the model itself. This is not what the
programmer is used to doing. Perhaps some developers are just
not capable of working on these kinds of projects. However, we
feel that the problem is caused by a poor understanding of this
technology. It has more to do with a clear understanding of the
problem, the representation of the solution, and the design to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

2

solve it. The Adaptive Object-Model style has never been
described, and most of the architects that use it don’t realize how
widely it is used.

This paper describes the details of the Adaptive Object-
Models architectural style. It also describes the results of
implementing an Adaptive Object-Model using the Observation
pattern at the Illinois Department of Public Health. Our goal is to
help people understand Adaptive Object-Models so that they only
use them when they are appropriate and so that when they use
them, they use them correctly.

2. ARCHITECTURUAL STYLE OF AOMS
Adaptive Object-Models provide an alternative to traditional

object-oriented design. Traditional object-oriented design
generates classes for the different types of business entities and
associates attributes and methods with them. The classes model
the business, so a change in the business causes a change to the
code and leads to a new version of the application. An Adaptive
Object-Model does not model these business entities as classes.
Rather, they are modeled by descriptions that are interpreted at
run-time. Thus, whenever a business change is needed, these
descriptions are changed which are then immediately reflected in
the running application.

Adaptive Object-Model architectures are usually made up of
several smaller patterns. TypeObject [11] separates an Entity
from an EntityType. Entities have Attributes, which are
implemented with the Property pattern, and the TypeObject
pattern is used a second time to separate Attributes from
AttributeTypes. The Strategy pattern is often used to define the
behavior of an EntityType. As is common in Entity-Relationship
modeling, an Adaptive Object-Model usually separates attributes
from relationships. Finally, there is usually an interface for non-
programmers to define new EntityTypes.

• TypeObject
Most object-oriented languages structure a program as a set

of classes. A class defines the structure and behavior of objects.
Object-oriented systems generally use a separate class for each
kind of object, so introducing a new kind of object requires
making a new class, which requires programming. However,
developers of large systems usually face the problem of having a
class from which they should create an unknown number of
subclasses [11]. Each subclass is an abstraction of an element of
the changing domain. The differences between the subclasses are
small and can be parameterized by setting values or objects
representing algorithms. TypeObject makes the unknown
subclasses simple instances of a generic class (see Figure 1); new
classes can be created dynamically at run-time by means of
instantiation of the generic class. Objects created from the
traditional hierarchy can still be created but making explicit the
relationship between them and their type. Figure 1 presents a
simple example where a given hierarchy is represented with the
class EntityType and its instances with the class Entity.
Replacing a hierarchy like this is possible when the behavior
between the subclasses is very similar or can be broken out into
separate objects. Therefore, the primary differences between the
subclasses are their attributes.

TypeObjects can be used in the factory scheduling system
to replace subclasses of Product and Machine with instances of
ProductType and MachineType. It can be used in an airline
scheduling system to replace subclasses of Airplane with

instances of AirplaneType [4]. It can be used in a
telecommunications billing system to replace subclasses of
NetworkEvent with instances of NetworkEventType. We also
used it in the Observation model to represent the relationship
between Observation and ObservationType (see Figure 5). In
all these cases, the difference between one type of object and
another is primarily their data values, not their behavior, so the
TypeObject pattern works well.

SomeClass

SubClass1 SubClass2 SubClassN...

Entity

+someOperations()
-specificAttribues : type

EntityType

+typeOperations()
-sharedAttributes : type0..n

Before

After

Figure 1 - TypeObject

• Property
The attributes of an object are usually implemented by its

instance variables. A class defines its instance variables. If
objects of different types are all the same class, how can their
attributes vary? The solution is to implement attributes
differently. Instead of each attribute being a different instance
variable, make an instance variable that holds a collection of
attributes (Figure 2). This can be done using a dictionary, vector,
or lookup table. In our example, the Property holds onto the
name of the attribute, its type, and its current value.

Entity

- firstAttribute : String = Any
- secondAttribute : String = Any
- ….

Entity
Property

-name : String = firstAttribute
-type : String = String
-value : String = Any

0..n

attributes

Before After

Figure 2 - Properties

Most Adaptive Object-Model architectures contain the
TypeObject and Property [5] patterns. The TypeObject pattern
divides the system into Entities and EntityTypes. Entities have
attributes that can be defined using Properties. Each property
has a type, called PropertyType, and each EntityType can then
specify the types of the properties for its entities. Figure 3
represents the resulting architecture after applying these two
patterns, which we call TypeSquare. It often keeps track of the
name of the property, and also whether the value of the property is
a number, a date, a string, etc. The result is an object model
similar to the following: Sometimes objects differ only in having

3

different properties. For example, a system that just reads and
writes a database can use a Record with a set of Properties to
represent a single record, and can use RecordType and
PropertyType to represent a table.

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

0..n type

0..nroperties

0..n type

0..n properties

Figure 3 - TypeSquare

Different kinds of objects usually have different kinds of
behaviors. For example, maybe records need to be checked for
consistency before being written to a database. Although many
tables will have a simple consistency check, such as ensuring that
numbers are within a certain range, a few will have a complex
consistency checking algorithm. Thus, Property isn’t enough to
eliminate the need for subclasses. An Adaptive Object-Model
needs a way to describe and change the behavior of objects.

• Strategies and RuleObjects
A Strategy is an object that represents an algorithm. The

Strategy pattern defines a standard interface for a family of
algorithms so that clients can work with any of them. If an
object’s behavior is defined by one or more strategies then that
behavior is easy to change.

Each application of the Strategy pattern leads to a different
interface, and thus to a different class hierarchy of Strategies. In
a database system, Strategies might be associated with each
Property and used to validate them. The Strategies would then
have one public operation, validate. But Strategies are more
often associated with the fundamental entities being modeled,
where they implement the operations on the methods.

These Strategies can evolve to become more complex
business rules that are built up or interpreted at runtime. These
can be either primitive rules or combination of business rules
through application of the Composite pattern.

Figure 4 is a UML diagram of applying the TypeObject
pattern twice with the Property pattern and then adding
Strategies or RuleObjects [1] for representing the behavior.
This resulting architecture is often seen in adaptable systems with
knowledge levels as described in this paper.

If the business rules are workflow in nature, you can use the
Micro-Workflow architecture as described by Manolescu. Micro-
Workflow describes classes that represent workflow structure as a
combination of rules such as repetition, conditional, sequential,
forking, and primitive rules. These rules can be built up at
runtime to represent a particular workflow process. Rules can
also be built up from table-driven systems or they may be more
grammar-oriented. This grammar-oriented approach has been
called Grammar-oriented Object design (GOOD) [2]. These more

complicated rules along with dynamic GUIs are usually the
hardest part of Adaptive Object-Models and are why there are not
generic frameworks for them [27].

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

Rule

PrimRule CompositeRule

rule0..n type

0..nproperties

0..n type

0..n properties

0..n

Figure 4 – TypeSquare with Rules

• Entity-Relationship
Attributes are properties that usually refer to primitive data

types like numbers, strings, or dates. These associations are
usually one way. Relationships are properties that refer to other
entities. Relationships are usually two-way associations; if Gene
is the father of Carol then Carol is the daughter of Gene. This
distinction, which has long been a part of classic entity-
relationship modeling and which has been carried over into
modern object-oriented modeling notations, is usually a part of an
Adaptive Object-Model architecture. The distinction often leads
to two subclasses of properties, one for attributes and one for
relationships.

One way to separate attributes from associations is to use the
Property pattern twice, once for attributes and once for
associations. Another way is to make two subclasses of Property,
Attribute and Association. An Association (called
Accountability by Fowler) would know its cardinality. A third
way to separate attributes from associations is by the value of the
Property. Suppose there is a class Value whose subclasses are
all immutable. Typical values would be numbers, strings,
quantities (numbers with units), and colors. A Property whose
value is an Entity represents an association, while a Property
whose value is a primitive data type is an attribute. It is
interesting to note that while few language designers seem to feel
the need to represent these relationships, most designers of
systems with Adaptive Object-Models do. Representing these
relationships as objects allows for runtime manipulated, thus
allowing for a power user to immediately adapt these entity-
relationships to changing business requirements.

• User Interface for Defining Types
One of the main reasons to design an Adaptive Object-Model

is to enable users and domain experts to change the behavior of
the system by defining new entities, relationships, and rules.
Sometimes the goal is to enable users to extend the system
without programmers. But even when only the developers will
define new entities and rules, it is common to build a specialized
user interface for defining them. For example, the insurance
framework at the Hartford has a user interface for defining new
kinds of insurance, including the rules for calculating their price.
Innoverse, a telephone billing system, has a user interface for
defining geographical regions, monetary units, and billing rules
for different geographical regions expressed in various monetary
units. The Argos school administration system has a user
interface for defining new document types and workflows.

4

Types are often stored in a centralized database. This means
that when someone defines new types, applications can use them
without having to be recompiled. Often applications are able to
use the new types immediately, while other times they cache type
information and must refresh their caches before they will be able
to use the new types.

The alternative to having a user interface for creating and
editing type information is write programs to do it. In fact, if
programmers are the only ones creating type information then it is
often easier to let them do it by writing programs, since they can
use their usual programming environment for this purpose. But
the only way to get non-programmers to maintain the type and
rule information is to give them simple tools to do so.

• Design of Adaptive Object-Models
The design of Adaptive Object-Models involves three major

activities: defining the business entities, rules and relationships;
developing a design of an engine for instantiating and
manipulating these entities according to their rules in the
application; and developing tools for describing these entities,
rules and relationships.

These activities are achieved by applying one or more of the
previously mentioned patterns in conjunction with other design
patterns such as Composite, Interpreter, and Builder.
Composite [7] is used for either building dynamic tree structure
types or rules. For example, if your entities can be composed in a
dynamic tree like structure, the Composite pattern is applied.
Builders and Interpreters are commonly used for building the
structures from the meta-model or interpreting the results.

But, these are just patterns; they are not a framework for
building Adaptive Object-Models. Every Adaptive Object-Model
is a framework of a sort but there is no generic framework for
building them. Rather, these set of patterns are commonly applied
to the Adaptive Object-Model architectural style. The first
Adaptive Object-Model you build is the hardest, and then you
know the patterns and can understand them.

3. AOM Example for Medical Observations
Other people have built most of the Adaptive Object-Models

that we have seen. However, we have built some and one in
particular that will be described in this paper is based on the
Observation pattern. Many applications at the Illinois Department
of Public Health (IDPH) manage information about patients and
people close to the patient, such as parents and doctors. The
programs vary in the kind of information (and the representation)
they manage. However, there are core pieces of information that
is common between the applications and can be shared between
applications.

Typically, the information being shared for the IDPH
applications is a set of observations [6, 9] about people. An
observation describes phenomenon during a given period of time.
Observations play a large role in the medical domain because they
associate specific conditions and measurements with people at a
given point in time. Some typical medical observations are eye
color, blood pressure, height and weight.

One way to implement observations is to build a class
hierarchy describing each kind of observation and associate these
observations with patients. This approach works when the
domain is well known and there is little or no change in the set of
observations. For example, one of the applications at IDPH
screens newborn infants for genetic diseases. In this application,

certain observations about the infant are made at the time of birth
such as height, weight, feeding type, gestational age, and mother's
hepatitis B indication. A natural implementation would be to
create a class for the infant, and create another set of classes and
associate them with the infant to capture the observations.

Another application at IDPH is for following up high-risk
infants. This application needs to capture observations about the
infant and the infant's mother such as HIV status, drug and
alcohol history, hepatitis background, gestational age, weight at
birth and the like.

• Type Objects and Properties
Many of our applications shared a similar hierarchy and

required that observations captured in one program to be
eventually used in other applications. We also noted that there
were really two basic kinds of observations. One kind deals with
a discrete set of values such as blood type and eye color. The
other kind has continuous values such as weight in grams or
height in feet and inches.

Figure 5 is a UML class diagram for implementing the first
complete observation model presented in Fowler’s book (page
43). His model has a class called CategoryObservation, which
is linked to a Category. In our model CategoryObservations
are replaced by Traits and Categories are replaced by literal
values, thus we do not have this class in our model.

Our IDPH System includes the Property pattern since an
Observation is a Property of a Person. Observations have
features such as a duration that most Properties do not have, so
not all properties are observations, but all observations are
properties.

ObservationPerson
n

Trait

-traitValue : Symbol

Measurement
Quantity

n

ObservationType
n

1

Figure 5 - Class Diagram of the Basic Observation Model

Figure 6 is a simple Instance Diagram with an example of a
Person named Smith. Smith has a height observation with a
value of 5 feet and an eye color observation with a value of blue.
Note that the first Observation has an ObservationType object,
which has a phenomenonType of #height, and a Quantity
object representing 5 feet, while the second Observation has a
value of blue and an ObservationType with phenomenonType
of #eyecolor. Whenever a value is entered for an Observation,
the Observation will use its ObservationType for validation.

As shown in Figure 6, there is an instance of
ObservationType for each kind of observation. Thus, to add a
new kind of observation, create a new instance of
ObservationType and add it to the model. This allows a new
type of observation to be created without requiring a new version
of an application.

5

aPerson
name <Smith>

obsCollection

aMeasurement
type
value

anObservationType
#height

aQuantity
value <5>
unit <ft>

aTrait
type
value <blue>

anObservationType
#eyeColor

Figure 6 - Instance Diagram of the Basic Observation Model

• Applying the Composite Pattern
The model presented in Figure 5 can be used to represent

most observations. However, some observations are more
complicated. For example, a “cholesterol” observation for a
patient is composed of two independent measures; HDL and LDL.
HDL and LDL can also be modeled as observations. Often, the
HDL observation is used independently and the LDL observation
is only considered when the HDL observation value is high.

Another example of a composite observation is blood test
results. A single blood test can contain many observations. Some
may be measurements such as white blood cell count while some
may be traits such as blood types. Others could be an overall
observation of a patient's health that includes observations such as
blood pressure, pulse, vision, and reflexes.

Fowler's model does not directly consider these multi-value
observations. Fowler allows observations like this to be modeled
as independent observations, but doesn't treat a group of
observations as a single observation. His model allows compound
units for observations, which represent values such as area (square
yards) and speed (feet per second). But composite observations
are observations that are composed of independent observations.
From the user’s perspective we can say that the units of atomic
observations do not need to be combined.

Fowler’s model also allows for observations to be associated,
which allow for observations to be linked to each other in a
diagnostic manner (for example, thirst indicates diabetes). This is
a useful concept in the medical domain but it still did not match
how we wanted to represent multi-valued observations.

The Composite pattern allows observations to be composed
of other observations. Therefore, a cholesterol observation can be
composed of two atomic observations for HDL and LDL. This
composition allowed us to capture the compound units for
observations, and allowed us to describe more complicated
observations like those above. It also makes it easier to use
observations such as HDL both independently of the cholesterol
observation and as a part of it.

anObservType
<#BloodPressure>

aMeasurement
<aQuantity>

aCompObs

anObservationType
<#SYSTOLIC>

anotherMeasurement
<anotherQuantity>

anObservationType
<#DIASTOLIC>

Figure 7 - Example of Blood Pressure

An instance of CompositeObservation can contain any
kind of observation (Composite Pattern). In this way it is
possible to define a complex Observation based on basic/atomic
ones. The “diastolic pressure” and the “systolic pressure”
observation of the “blood pressure” observation can be a
composite observation as shown in Figure 7.

Notice that the instance of CompositeObservation (with
type #BloodPressure) and the instances of Measurement are
associated with different instances of ObservationType (in our
example there is aMeasurement with #SYSTOLIC and
anotherMeasurement with #DIASTOLIC). This helps clarify
the difference between these observations.

• Applying the Strategy Pattern
An ObservationType places constraints on the value of an

Observation with that type. One way to implement these
constraints is to make the ObservationType responsible for
checking whether the value of an Observation is legal. Each
ObservationType knows its set of possible values. But some of
the sets are the same for different ObservationTypes, e.g. any
observation quantifying the presence of an illness has three
possible values such as YES, NO, UNKNOWN. These sets are
Validators; they are objects that can tell whether a value is valid.

Just as there are two kinds of Observation types for
Measurements and Traits, there will be two kinds of
Validators. One represents a range of Measurements, and one
represents a set of Traits. A Validator is just an algorithm telling
whether a value is valid, therefore it is a Strategy. The resulting
architecture for Validators is shown in Figure 8.

Validator

-name : String

RangeValidator

+isValid(quantity : Quantity)

-unit : Unit

DiscreteValidator

+isValid(discreteValue : Symbol)

-descriptorSet : Collection

ObservationType
n

isValid(quantity)
^ (unit.family == quantity.unit.family AND

intervalSet includes(quantity.amount)

Range n

intervalSet

isValid(discreteValue)
^ descriptorSet includes(discreteValue)

Figure 8 - Architecture for Observation Validation

6

DiscreteValidator and RangedValidator are just
describing the difference between the types of values they are
expecting to store in the #observationValue variable. Therefore,
rather than having two classes for representing traits and
measurements, a single class representing PrimitiveObservations
can model Measurements and Traits. Whether an
ObservationType represents a trait or a measurement depends
upon the class of its Validators (DiscreteValidator and
RangedValidator).

In the Observation model, Validators represent domain-
related strategies for deciding whether the value of a given
Observation is valid or not. The business rules for the
Validators can be represented by parameterizing the differences
of the valid results with two different types of Validators;
RangedValidator and DiscreteValidator. Analysis revealed
that future models could have more complicated business rules
that allowed for composite business rules that could use and/or
logic.

• Final Observation Architecture
Figure 9 shows the resulting class diagram for the

implementation of observations with Validators. Observations
can either be PrimitiveObservations or they can be
CompositeObservations. Each Observation has its
ObservationType associated with it, which describes the
structure of the Observation and hangs on to the validation rules
through its relevant Validator. Therefore, the ObservationType
is used to validate the structure and the values.

The ObservationType takes care of the structural properties
of the Observation that it is describing. For example,
CompositeObservationType is used to create and validate any
kind of CompositeObservation and defines the structure of the
CompositeObservation. PrimitiveObservationType is used to
describe the possible quantity or discrete values and the validation
rules for each. Note that instances of PrimitiveObservations
class do not understand the #convertTo: method, this
responsibility is directly delegated to the Quantity associated with
the Observation. PrimitiveObservations also have been
enhanced to allow for multiple values. For example, the

language(s) that a person understands could be a set of
DiscreteValues.

RangedValidators also have an interval set of Quantities,
which describe the sets of valid values for the
ObservationTypes. The validation for
CompositeObservationType checks if all of its components are
valid. This could be enhanced to allow for a composite function
for validating these types of observations.

Each ObservationType knows how to create instances with
its type. PrimitiveObservations have a trivial structure, but
CompositeObservations, the structure has to be correctly
established. This is a typical implementation of a Factory for
creating Observations when using TypeObjects.

In the final architecture (Figure 9) the relationship between
PartyType and ObservationType is an example of
TypeSquare. It is useful for defining the set of observations that
any given Party within the system can have attached.

• User Interfaces for Defining Types
We provided tools for creating, and maintaining instances of

the ObservationType hierarchy and Validator hierarchy.
Software developers and analysts can create new types of
observations and define the validation business rules easily.

Instances of ObservationType are created using the
PrimitiveObservation Type Editor (Figure 10 a) and
CompositeObservation Type Editor (Figure 10 b). They had a
developer or business expert define the types of observations used
in the application.

Instances of DiscreteValidator and RangedValidator use
the Discrete Validator Editor and the Ranged Validator Editor
(Figure 11) to assist developers and business experts with creating
and maintaining the validation business rules.

CompositeObservations are created by selecting from a
list of observations that are not already part of the component.
PrimitiveObservations are named and associated with a
Validator. The Validators define the primitive types of
observation values and their relevant validating business rules.

V a lid ato r

R an g e V a lid ato r

+ isV alid (qu an tity : Q ua ntity)

-u n it : U n it
-in te rva lS e t : C olle c tion

D isc re teV alid a to r

+ isV alid (d isc re teV alue : S ym b ol)

-d es c rip torS et : C olle c tion

O b se rv atio n Typ e

+ c reateO b se rvation ()
+ is V alid (ob se rvation : O bs erva tio n)

-p he no m en on : S ym bo l
-m u ltiV a lue : B o olea n

1

n
P rim itive O b se rv atio n T yp eC o m p o s iteO b s erva tio n Typ e

-s tru ctu re : O b s ervation T ype

O b serva tio n

+ is V alid ()

-re co rde dD ate : D a te

P a rty

C o m p o s iteO b s erva tio n

-ob se rvation s : O bs ervat io ns

P rim itiv eO b s erva tio n

n

n

1

Q u a n tity
0..n

va lue s

D is crete V a lu e
0..n

P a rtyTyp e

1

0..n

n

n

n

Figure 9 - Class Diagram of the Final Architecture

7

Figure 10 ObservationType Editors

The first version of these editors required the
analyst/developer to understand many of the business rules of how
to build the observations, as the early versions of the editor did
not include much error checking. This is a common during
software development; how much energy is put into developing
the application and how much is put into developing support
tools. The answer is never very clear and usually depends upon
the amount of resources available, the amount of applications that
are being maintained, and the pain caused to those using the
editors.

Another example of misusing the model was the result of a
new requirement produced after a user review. Users required
that some observations could have more than one value; examples
of this requirement are observations such as Ethnicity, Language,
and Race. The developers decided to create new instances of
CompositeObservationType with phenomenonType of
CompLanguage, CompEthnicity, and CompRace. Each new
ObservationType has a collection of the appropriate primitive
type, e.g. Language, Ethnicity and Race. Unfortunately, whenever
a new language needed to be added to the system, the
CompositeObservationType needed to be edited. Similarly,
with CompositeObservationTypes, you needed to select a
value such as “NO” for a SpanishLanguage Observation to
designate that this was not one of the composites you wanted to
select. Just because you don’t select an observation, it doesn’t
imply that you are saying anything about it. However, by
modeling values such as Language by creating many different
CompositeObservationTypes, certain undesired meaning was
added to the system.

We solved this problem by changing the cardinality of the
association between Observation and its possible values and
making the ObservationType responsible for knowing whether it
allows multiple values. Changing our documentation only took a
few minutes, changing the Smalltalk code took a few hours of

refactoring; but updating the database took several days since we
had to change the mapping schema for those classes, update table
definitions and, finally, migrate all the affected data.

Figure 11 - Validator Editors

4. IMPLEMENTATION ISSUES
The primary implementation issues that need to be addressed

when developing Adaptive Object-Models are how to store the
model in a database, how to present the domain-elements to the
user, and, how to maintain the model.

Adaptive Object-Models expose metadata as regular objects;
it means that the metamodel can be stored in databases following
well-known techniques. Object-Oriented databases are the easiest
way to manage object persistence. However, it is also possible to
manage the model persistence using a relational database. In the
example presented in this paper the Adaptive Object-Model was
distributed among a number of different sites. Each site has its
own database manager ranging from single user databases to more
powerful multi-users database managers. [10, 22, 24] describe
some standard ways for mapping objects to relational databases.
We developed our mapping object standards using a combination
of these techniques.

8

atabase

XML/XMI

Persistence
Mechanism

XML Parser
Medata

Interpreter

Metadata
Repository/Namespace

Domain
Objects

Application

Figure 12 - Storing and Retrieving Metadata

It is also possible to store the metadata using XML
(Extensible Markup Language) or even XMI (XML Metadata
Interchange Format). Note that no matter how the metadata is
stored, the system has to be able to read from the storage and
populate the Adaptive Object-Model with the correct
configuration of instances (Figure 12).

GUI issues also needed to be considered when implementing
this dynamic architecture. The model we presented as part of the
example make it easy to create new observation domain objects
but the values still need to be entered from and presented to final
users. It was impractical and resource demanding to develop
dedicated widgets for each kind of observation. Our solution was
to develop a set of widgets that were able to get information from
the metamodel and customize themselves based upon the
metadata. We found out that we only needed half a dozen
different types of widgets that only differed based upon the
validation business rules described by the ObservationTypes.

For example, PrimitiveObservationTypes are presenting
either a ranged value, or a discrete set of values, which might be
presented in a list or as a textual string. Therefore these types of
GUIs can be developed and associated with the types. The only
differences are the types of values they are either displaying or
validating.

An example of this can be seen in the Refugee application
developed by IDPH for screening refugees as they are accepted
into the country (see Figure 13). This application captures over
100 observations about people as they enter the country. Almost
every widget on the bottom half of Figure 13 is an observation.
The observations in this example are both ranged values (such as
Blood Pressure, Pulse, and Temperature), and discrete values
(such as Heart, Lungs, Abdomen, and Skin).

Introducing the Observation Model into the Refugee
Tracking System was a delicate task. Developers found hard to
understand the model from the documentation, moreover
significant parts of the model is stored as metadata on the
database. The result was a growing numbers of mistakes and
duplications. For example, observations for measuring Height in
different units (inches, centimeters, feet, etc) were created; this
included a Quantity model, which is able to handle unit
conversions. Part of our solution was to develop test cases in
which developers can use running examples in order to

understand how the model worked. After the initial period of
learning and experimentation, developers of this system were able
to successfully create the remaining ninety of one hundred
observations in just a few days. People then started seeing the
power of the model as it was now easier to change the business
rules and there were not 100 classes to code, debug, and maintain.

The model is able to store all the metadata using a well-
established mapping to relational databases, but it was not
straightforward for a developer or analyst to put this data into the
database. They would have to learn how the objects were saved
in the database as well as the proper semantics for describing the
business rules. A common solution to this is to develop editors
and programming tools to assist users with using these black-box
components [19]. This is part of the evolutionary process of
Adaptive Object-Models as they are in a sense, “Black-Box”
frameworks, and as they mature, they need editors and other
support tools to aid in describing and maintaining the business
rules.

5. CONSEQUENCES OF AOMS
People are building systems that use metadata and Adaptive

Object-Models from the ground up for a variety of reasons.
ECOOP and OOPSLA Workshop participants identified the
issues relating to when you want to build these types of systems
and reasons that cause Adaptive Object-Models to fail [16, 25,
26].

The main advantage of the Adaptive Object-Model is ease of
change. An Adaptive Object-Model is good if your system is
constantly changing, or if you want to allow users to dynamically
configure and extend their system. An Adaptive Object-Model
can lead to a system that allows users to "program without
programming". Alternatively, an Adaptive Object Model can
evolve into a domain-specific language.

Turning a program into an Adaptive Object-Model usually
makes it much smaller in the number of classes. Information that
was encoded in the program is now encoded in the database. This
new class structure doesn't change. Instead, changes to the
specification lead to changes in the content of the database.

The main business case for an Adaptive Object-Model is to
make it possible to develop and to change software quickly.
Adaptive Object-Models reduces time-to-market, by giving
immediate feedback on what a new application looks like and how
it works, and by allowing users of the system to experiment with
new product types.

It should be noted however, that there could be a higher
initial cost associated with developing an Adaptive Object-Model.
This is primarily because it is harder to develop a general solution
to a problem. It usually requires iterations. Customer feedback is
also very important. It is important to know who your customers
really are. Are they going to be programmers taking the changes
and using your framework to add in the new business rules, or are
they going to be users of the application? Iterating by regularly
releasing software and can help ease the problem of paying for the
framework and can help give the needed customer feedback as the
framework evolves.

9

The primary disadvantage is that these systems can be hard to
build. They can also be harder to understand since there are two
co-existing object systems; the interpreter written in the object-
oriented programming language and the Adaptive Object-Model
that is interpreted. Classes do not represent business abstractions
because most information about the business is in the database.

Adaptive Object-Models generally need tools and support
GUIs for defining the objects in your system. Adaptive Object-
Models can also be slower since they are usually based upon
interpreting the representation of your object model. However,
our experience is that lack of understanding is a bigger problem
than lack of speed. Adaptive Object-Model requires a system to
interpret the model. The Adaptive Object-Model is embedded in
a system, and effects its execution. Thus, Adaptive Object-
Models require adequate software support.

Adaptive Object-Models leads to a domain-specific
language. Although it is often easier for users to understand a
domain-specific language over a general-purpose language,
developers of an Adaptive Object-Model inherit all of the
problems associated with developing any language such as
providing debuggers, version control, and documentation tools.
Other problems are those involved with training. There are ways
around these problems but they are problems nonetheless and
should be faced.

Adaptive Object-Models are not the solution to every
problem. They require sustained commitment and investment,
and their flexibility and power can make them harder to
understand and maintain. They should only be undertaken when
either the products or rules associated with products are rapidly
changing, or, when users demand to have highly configurable
systems.

6. ALTERNATIVES AND RELATED WORK
There have been many techniques applied over the years for

moving business rules out of the code, making systems more
adaptable to new requirements. The best-known alternatives or
related techniques for building these types of systems are Code
Generators, Generative Programming, Metamodeling, Table-
Driven systems, and Business Rules research.

Code generators produce either executable-code or source-
code. This technique focuses on the automatic generation of
systems from high-level descriptions. In this context it is arguable
whether the high-level description acts like the meta-model of the
generated system. It is related to Adaptive Object-Model in that
the functionality of systems is not directly produced by
programmers but specified using domain-related constructs.
There are also editors commonly built for describing the metadata
for generating code. These techniques are different from Adaptive
Object-Models primarily because it decouples the meta-model
from the system itself. Adaptive Object-Models immediately
reflect the changed business requirement without any code
generation or recompilation.

Generative Programming [3] provides infrastructure for
transforming descriptions of a system into code. Generative
Programming deals with a wide range of possibilities including
those from Aspect Oriented Programming and Intentional
Programming. Although Generative Programming does not
exclude Adaptive Object-Models, most of the techniques deal
with generating code from descriptions. Descriptions are based
on provided primitive structures or elements and can evolve to
become a visual language for the domain [21].

Figure 13 - Refugee Tracking System

10

The central concept of Generative Programming is the
generative domain model. In Generative Programming, the model
has to cover a family of problems (not just one Solution or
application). Furthermore, there has to be some high-level,
domain-specific representation that allows you to specify/define a
concrete instance of the family. Finally, there is some
configuration knowledge that maps the problem description to the
solution space.

The key point is that there are many possible technology
mappings for a generative domain model. The domain-specific
specification means could be implemented as a new textual or
graphical language, or could be implemented right in a
programming language (e.g., as enumeration types), or could be
realized as some wizards or GUI forms. The mapping between
the specification and the solution space could be done using code
generation, dynamic reflection (including Adaptive Object-
Models), or simply using the factory pattern - to name some
alternatives.

In some cases (e.g., embedded systems), static configuration
is sufficient, in which case code generation is appropriate. In
other cases, dynamic configuration and reconfiguration is
necessary, in which case dynamic metaprogramming and Adaptive
Object-Models is the way to go. Ideally, one would like to
encode the configuration knowledge in just one form and be able
to decide for static or dynamic configuration independently of this
form and based on context only. This closely corresponds to
partial evaluation. Think of an Adaptive Object-Model and the
possibility to encode an Adaptive Object-Model only once, but
being able to either interpret it or to compile all or some of its
dynamic flexibility away at any time.

Given this background, we would make the following
comparison between Adaptive Object-Models and Generative
Programming.

• Generative Programming focuses on system families;
Adaptive Object-Models can be used for system
families (e.g. to code frameworks), but not only.

• Adaptive Object-Model focuses on objects (as the name
already suggests); Generative Programming is
independent of OO.

• Adaptive Object-Model can be used as one possible
technology mapping to do Generative Programming.

Metamodeling techniques include a variety of approaches
most of which are generative in nature. In general, these
techniques focus on manipulating the model and meta-model
behind a system as well as supporting valid transformations
between representations [15]. Quite often the attention is more on
the meta-model, or a model for generating a model, rather than the
final application that will reflect the business requirements.

They are related to Adaptive Object-Models in that they both
have a “meta” model that is used for describing (or reflect) the
business domain, there are usually special GUI tools for
manipulating the model, and metadata is usually interpreted for
the creation of the actual model. The primary difference is that
Metamodeling techniques as provided by CASE tools generate the
code from the descriptive information [24] while Adaptive
Object-Models interpret the descriptive information at run-time.
Thus, if you change your business information with a CASE tool,
you will generate a new program, compile and release it to your
users. While in an Adaptive Object-Model, you change your
business information, which is usually stored in a shared database
that the running systems have access to. Then, once the

information becomes available, the system immediately reflects
the new changes without having to release a new system. Riehle
et. al [18] describes a UML Virtual Machine that has an Adaptive
Object-Model to immediately reflect the changes in a metamodel.

Table-Driven systems have been around since the early
database days in the 1970’s. Quite often the differences in the
business rules can be parameterized [14]. By storing these
differences in a database, the running system can either interpret
these changes from a database table or the appropriate function
can be called with the differing values from the database.
Sometimes these are built with triggers and stored procedures.

A lot of recent work has been done towards looking at ways
to represent business rules, specifically allowing for the rules to
dynamically change. There has been a couple of workshops
sponsored at OOPSLA recently, which focused on just this topic
where many papers were presented describing both working
systems and research in this area.

7. CONCLUSIONS
Adaptive Object-Models provide an alternative to usual

object-oriented design. Conventional object-oriented design
generates classes for the different types of business entity and
associate attributes and methods with them. These are such that
whenever a business change to the system is needed, a developer
has to change the code and release a new version of the
application for the change to take affect. An Adaptive Object-
Model does not model these business entities as first class objects.
Rather, they are modeled by a description of structures,
constraints and rules within the domain. The description is
interpreted and translated into the meta-model that drives the way
the system behaves. Thus, whenever a business change is needed,
these descriptions can change and be immediately reflected in the
running application. The most important design patterns needed
for implementing these types of dynamic systems are Type-
Object, Properties, Composite, and Strategy.

Architects that develop these types of systems are usually
very proud of them and claim that they are some of the best
systems they have ever developed. However, developers that have
to use, extend or maintain them, usually complain that they are
hard to understand and are not convinced that they are as great as
the architect claims. This is usually because of lack of
understanding of these types of systems.

This architectural style can be very useful in systems;
specifically systems that emphasizes flexibility and those that
need to be dynamically configurable. However, this style has not
been well documented and is hard to understand; primarily due to
the many levels of abstraction. It is important to be prepared as
the end users do more with your system (e.g. they try to model
more cases) to add to your rule language and definitions. Expect
the Adaptive Object-Model to grow to meet the descriptive power
your users need, and keep actively involved in making sure their
needs are covered and it doesn’t get out of hand (similar to what a
framework author has to do).

This paper describes the architectural style of Adaptive
Object-Models, including the process for developing them along
with advantages and disadvantages. We hope that this paper will
help both architects and developers to understand, develop, and
maintain systems based on an Adaptive Object-Model.

11

8. ACKNOWLEDGMENTS
We would like to thank the many people whose valuable

input greatly improved this paper; specifically we would like to
thank: Ali Arsanjani, John Brant, Krzysztof Czarnecki, Brian
Foote, Martin Fowler, Alejandra Garrido, Mike Hewner, Dragos
Manolescu, Brian Marick, Reza Razavi, Nicolas Revault, Dirk
Riehle, Don Roberts, Andrew, Rosenfeld, Gustavo Rossi,
Weerasak Witthawaskul, and Rebecca Wirfs-Brock.

9. REFERENCES

[1] Ali Arsanjani. “Rule Object Pattern Language”. Proceedings
of PLoP2000. Technical Report #wucs-00-29, Dept. of
Computer Science, Washington University Department of
Computer Science, October 2000.

[2] Ali Arsanjani. Using Grammar-oriented Object Design to
Seamlessly Map Business Models to Component -based
Software Architectures, Proceedings of The International
Association of Science and Technology for Development,
2001, Pittsburgh, PA.

[3] Krzysztof Czarnecki & Ulrich W. Eisenecker. Generative
Programming – Methods, Tools, and Applications, 2000.
Addison-Wesley, 2000.

[4] Peter Coad, "Object-Oriented Patterns". Communications of
the ACM. 35(9):152-159, September 1992.

[5] Brian Foote, Joseph W. Yoder. “Metadata and Active Object
Models”. Proceedings of Plop98. Technical Report #wucs-
98-25, Dept. of Computer Science, Washington University
Department of Computer Science, October 1998. URL:
http://jerry.cs.uiuc.edu/~plop/plop98.

[6] Martin Fowler. Analysis Patterns, Reusable Object Models.
Addison-Wesley. 1997.

[7] Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.

[8] Erich Gamma, Richard Helm, and John Vlissides, Design
Patterns Applied, tutorial notes from OOPSLA’95.

[9] David Hay. Data Model Patterns, Convention of Thought.
Dorset House Publishing. 1996

[10] Wolfgang Keller, Jens Coldewey. “Accessing Relational
Databases”. Pattern Languages of Program Design 3.
Addisson Wesley, 1998.

[11] Ralph Johnson, Bobby Wolf. “Type Object”. Pattern
Languages of Program Design 3. Addisson Wesley, 1998.

[12] Ralph E. Johnson and Jeff Oakes, The User-Defined Product
Framework, 1998.
URL: http://st.cs.uiuc.edu/pub/papers/frameworks/udp.

[13] D. Manolescu. “Micro-Workflow: A Workflow Architecture
Supporting Compositional Object-Oriented Software
Development”. PhD thesis, Computer Science Technical
Report UIUCDCS-R-2000-2186. University of Illinois at
Urbana-Champaign, October 2000, Urbana, Illinois.

[14] Alan Perkins. Business rules=meta-data. Proceedings of 34th
International Conference on�Technology of Object-Oriented
Languages and Systems, 2000. On page(s): 285–294.

[15] N. Revault, X. Blanc & J-F. Perrot. "On Meta-Modeling
Formalisms and Rule-Based Model Transforms", Comm. at
Ecoop'2K workshop Iwme'00, Sophia Antipolis & Cannes,
France, June 2000.

[16] Nicolas Revault & Joseph W. Yoder. "Adaptive Object-
Models and Metamodeling Techniques", ECOOP'2001
Workshop Reader; Lecture Notes in Computer Science,;
Springer Verlag 2001.

[17] D. Riehle, M. Tilman, R. Johnson. “Dynamic Object Model”.
Proceedings of PLoP2000. Technical Report #wucs-00-29,
Dept. of Computer Science, Washington University
Department of Computer Science, October 2000.
URL: http://jerry.cs.uiuc.edu/~plop/plop2k.

[18] D. Riehle, S. Fraleigh, D. Bucka-Lassen, N. Omorogbe. “The
Architecture of a UML Virtual Machine”. Proceedings of the
2001 Conference on Object-Oriented Program Systems,
Languages and Applications (OOPSLA ’01), October 2001.

[19] Don Roberts, Ralph Johnson. “Patterns for Evolving
Frameworks”. Pattern Languages of Program Design 3.
Addisson Wesley, 1998.

[20] I. Rouvellou, L. Degenaro, K. Rasmus, D. Ehnebuske, B.
McKee. “Extending business objects with business rules”.
Proceedings on Technology of Object-Oriented Languages,
2000. On page(s): 238 – 249,

[21] C.G. Roy, J. Kelso, C. Standing. “Towards a visual
programming environment for software development”.
Proceedings on Software Engineering: Education & Practice,
1998. Page(s): 381 – 388.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen. "Object-Oriented Modeling and Design" Prentice
Hall, 1991.

[23] M. Tilman, M. Devos. “A Reflective and Repository Based
Framework”. Implementing Application Frameworks, Wiley,
1999. On page(s) 29-64.

[24] J. Yoder, R. Johnson, Q. Wilson. “Connecting Business
Objects to Relational Databases”. Proceedings of Plop98.
Technical Report #wucs-98-25, Dept. of Computer Science,
Washington University Department of Computer Science,
October 1998. URL: http://jerry.cs.uiuc.edu/~plop/plop98.

[25] Joseph W. Yoder, Brian Foote, Dirk Riehle, and Michel
Tilman. Metadata and Active Object-Models Workshop
Results Submission; OOPSLA Addendum, 1998.

[26] Joseph W. Yoder & Reza Razavi. "Metadata and Adaptive
Object-Models", ECOOP'2000 Workshop Reader; Lecture
Notes in Computer Science, vol. no. 1964; Springer Verlag
2000.

[27] Joseph W. Yoder, Ralph Johnson. “Implementing Business
Rules with Adaptive Object-Models”. Business Rules
Approach. Prentice Hall. 2002.

